

Version 24.11

# LZCap®AG(3'Ma-Cy5) Capping Kit (N1-Me-pUTP)

**Description:** LZCap<sup>®</sup>AG(3'Ma-Cy5) Capping Kit is the co-transcriptional synthesis of mRNA containing the Cap1 structure *in vitro*. The core component LZCap<sup>®</sup>AG(3'Ma-Cy5) is a Cap1 analog that can be added to the 5' end of mRNA in the presence of T7 polymerase. DNase I and LiCl are included in the kit for mRNA purification. Recommended wavelengths for detecting the Cy5 fluorescence of LZCap<sup>®</sup>AG(3'Ma-Cy5) mRNA: (640/675).

| No. | Component                       | Concentration | 20 Test |
|-----|---------------------------------|---------------|---------|
| 1   | LZCap®AG(3'Ma-Cy5)              | 25 mM         | 64 µL   |
| 2   | ATP                             | 100 mM        | 20 µL   |
| 3   | N1-Me-pUTP                      | 100 mM        | 20 µL   |
| 4   | СТР                             | 100 mM        | 20 µL   |
| 5   | GTP                             | 100 mM        | 20 µL   |
| 6   | 10×Fluro Transcription Buffer   | /             | 40 µL   |
| 7   | Enzyme Mix                      | /             | 80 µL   |
| 8   | Recombinant DNase I(RNase-free) | 5 U/µL        | 40 µL   |
| 9   | LiCl                            | 7.5 M         | 1 mL    |
| 10  | Control                         | 0.5 µg/µL     | 4 µL    |
| 11  | RNase Free Water                | /             | 2 mL    |

#### Specifications and Components: 20T/Kit (20µL)

**Storage Conditions:** store at -15°C or below.

### **DNA Template Design**

LZCap®AG(3'Ma-Cy5) is suitable for AG-initiated sequences. As shown in the figure below, the T7

promoter (underlined) followed by the AG sequence can effectively initiate transcription.

T7 polymerase transcription+LZCap®AG(3'Ma-Cy5)

5' **GAG**GNNNNNNNNNNNNNNNNNN 3'



## Protocol

1. Thaw components required for the experiment on ice.

| Component                               | Volume (µL) | Final concentration |
|-----------------------------------------|-------------|---------------------|
| ATP (100 mM)                            | 1µL         | 5 mM                |
| N1-Me-pUTP (100 mM)                     | 1µL         | 5 mM                |
| CTP (100 mM)                            | 1µL         | 5 mM                |
| GTP (100 mM)                            | 1µL         | 5 mM                |
| LZCap <sup>®</sup> AG(3'Ma-Cy5) (25 mM) | 3.2µL       | 4 mM                |
| 10×Fluro Transcription Buffer           | 2µL         | 1×                  |
| Enzyme Mix                              | 4µL         | /                   |
| Linear DNA+ RNase Free Water            | 6.8µL       | 50 ng/μL            |
| 终体积                                     | 20µL        |                     |

- 2. Mix the prepared reaction solution, centrifuge briefly, and incubate at 37°C for 2-3 hours. The reaction time should be increased to 4-8 h when the length of transcript is less than 100 nt.
- After the reaction, 2µL of DNase I is added to each tube and the DNA template will be digested at 37° C for 15min.
- 4. Purification of mRNA by LiCl precipitation
  - 1) Add 50µL of LiCl and 30µL of RNase Free Water to 10µL of transcript mRNA after the reaction (the final concentration of LiCl should be kept at 4.5-4.8 M), mix well and incubate at -20°C for at least 0.5h.
  - 2) Centrifuge the mixture at 12000rpm for 15min, and remove the supernatant and preserve the precipitate.
  - 3) Wash the precipitate with 600µL of pre-chilled 75% ethanol, centrifuge at 12000 rpm for 8 min, and remove the supernatant.
  - 4) The purified mRNA should be dried for 10 min until the ethanol evaporated completely and is re-dissolved with 30-100µL RNase-Free water.

### Notes:

- 1) LZCap®AG(3'Ma-Cy5) is suitable for T7 promoter transcription vector with 5' AG 3' initiated sequences, which needs to be considered when constructing the vector.
- 2) LZCap®AG(3'Ma-Cy5) and its mRNA products should be stored and used away from light.
- 3) The reagents, consumables and containers used in this experiment are free of RNase and DNase contamination.
- 4) It is recommended to use a linearized DNA template for transcription.



- 5) When modified nucleotides is used in place of wild-type nucleotides, the final concentration of the transcript is not affected, but the UV ratio of 260/280 may be different from regular RNA.
- 6) If the PCR product is used as the DNA template, the amount of DNA template can be reduced by half.
- 7) Due to the high concentration of 10×Fluro Transcription Buffer, the high salt environment will lead to polymerase inactivation. When preparing the reaction solution, we need to add water first, then buffer, NTPs and LZCap®AG(3'Ma-Cy5), DNA template, and finally the enzymes.