

Version 24.11

LZCap[®]AG(3'Acm) Capping Kit (N1-Me-pUTP)

Description: LZCap[®]AG(3'Acm) Capping Kit is the co-transcriptional synthesis of mRNA containing the Cap1 structure *in vitro*. The core component LZCap[®]AG(3'Acm) is a Cap1 analog that can be added to the 5' end of mRNA in the presence of T7 polymerase. DNase I and LiCl are included in the kit for mRNA purification. The mRNA capped with LZCap[®]AG can be translated in cells and *in vivo*. This kit can be widely used in transcription *in vitro*, gene editing, vaccine development, CAR-T therapy, protein replacement therapy, and regenerative medicine.

No.	Component	Concentration	10 Test	50 Test	200 Test
1	LZCap [®] AG(3'Acm)	100 mM	16 µL	80 µL	320 µL
2	АТР	100 mM	20 µL	100 µL	400 µL
3	N1-Me-pUTP	100 mM	20 µL	100 µL	400 µL
4	СТР	100 mM	20 µL	100 µL	400 µL
5	GTP	100 mM	20 µL	100 µL	400 µL
6	10×Transcription Buffer L	/	20 µL	100 µL	400 µL
7	Enzyme Mix	/	20 µL	100 µL	400 µL
8	Recombinant DNase I(RNase-free)	5 U/µL	20 µL	100 µL	400 µL
9	LiCl	7.5 M	300 µL	1.5 mL	6 mL
10	Control	0.5 µg/µL	2 µL	10 µL	40 µL
11	RNase Free Water	/	1 mL	4.5 mL	18 mL

Specifications and Components: 10T/Kit (20µL), 50T/Kit (20µL), 200T/Kit (20µL)

Storage Conditions: store at -15°C or below.

DNA Template Design

LZCap[®]AG(3'Acm) is suitable for AG-initiated sequences. As shown in the figure below, the T7 promoter (underlined) followed by the AG sequence can effectively initiate transcription.

T7 polymerase transcription+LZCap[®]AG(3'Acm)

5' **GAG**GNNNNNNNNNNNNNNNNNN 3'

Protocol

1. Thaw components required for the experiment on ice.

Volume (µL)	Final concentration	
2µL	10 mM	
1.6µL	8 mM	
2µL	1×	
2µL	/	
6.4µL	50 ng/µL	
20µL		
	2μL 2μL 2μL 2μL 2μL 1.6μL 2μL 2μL 2μL 6.4μL	

- 2. Mix the prepared reaction solution, centrifuge briefly, and incubate at 37°C for 2-3 hours. The reaction time should be increased to 4-8 h when the length of transcript is less than 100 nt.
- After the reaction, 2µL of DNase I is added to each tube and the DNA template will be digested at 37° C for 15min.
- 4. Purification of mRNA by LiCl precipitation
 - 1) Add 30µL of LiCl and 30µL of RNase Free Water to 20µL of transcript mRNA after the reaction (the final concentration of LiCl should be kept at 2.5-2.8 M), mix well and incubate at -20°C for at least 0.5h.
 - 2) Centrifuge the mixture at 12000rpm for 15min, and remove the supernatant and preserve the precipitate.
 - 3) Wash the precipitate with 600µL of pre-chilled 75% ethanol, centrifuge at 12000 rpm for 8 min, and remove the supernatant.
 - 4) Repeat purification step 3) once.
 - 5) The purified mRNA should be dried for 10 min until the ethanol evaporated completely and is re-dissolved with 30-100µL RNase-Free water.

Notes:

- 1) LZCap[®]AG(3'Acm) is suitable for T7 promoter transcription vector with 5' AG 3' initiated sequences, which needs to be considered when constructing the vector.
- 2) The reagents, consumables and containers used in this experiment are free of RNase and DNase contamination.
- 3) It is recommended to use a linearized DNA template for transcription.
- 4) When modified nucleotides is used in place of wild-type nucleotides, the final concentration of

the transcript is not affected, but the UV ratio of 260/280 may be different from regular RNA.

- 5) If the PCR product is used as the DNA template, the amount of DNA template can be reduced by half.
- 6) Due to the high concentration of 10×Transcription Buffer L, the high salt environment will lead to polymerase inactivation. When preparing the reaction solution, we need to add water first, then buffer, NTPs and LZCap[®]AG(3'Acm), DNA template, and finally the enzymes.