News

News

新闻中心

Cell Reports:LZCap® Capped Multivalent mRNA Vaccine Study Shows 100% Immune Protection-1

发布:2024-06-24 阅读:313

图1-1.jpg

           

            Recently, the journal Cell Reports published a study jointly conducted

      by the Wuhan Institute of Virology, Chinese Academy of Sciences, and other  

      institutions. The study provides a detailed account of the development of a

      multivalent MPOX (monkeypox) mRNA vaccine and its excellent performance 

      in animal models. The research indicates that the LZCap®-capped multivalent 

      monkeypox mRNA vaccine can stimulate significant antigen-specific humoral

      and cellular immunity, marking another major breakthrough in vaccine

      development.

                           图2.jpg


            High-Efficiency mRNA Translation

            The research team demonstrated that after encapsulation with LNP, the

      LZCap® capped multivalent mRNA can be rapidly and efficiently translated 

      to antigen proteins (B6R, A29L, A35R, and M1R) in the body.

          图3.jpg


            Strong Immune Responses

            The LZCap® capped multivalent mRNA vaccine can induce significant 

      antigen-specific immune responses. The study data shows that after 

      vaccination with the LZCap® capped MPXV multivalent mRNA vaccine, robust

      humoral immune responses induced, and mRNA vaccines also elicited strong 

      cellular immune responses.

            图4.jpg

                图5.jpg


            These robust immune responses provide higher protective efficacy for the

       vaccine with fewer side effects, showing superior performance when facing 

       viral challenges.

                图6.jpg


            This research presents compelling scientific evidence supporting the 

      application of LZCap® capping technology in mRNA vaccine development. 

      As this technology continues to be advanced and implemented, we can 

      anticipate the emergence of more efficient and safer vaccines, offering 

      enhanced protection for human health.

            The extensive adoption of LZCap® capping technology represents a 

      substantial advancement in mRNA vaccine development and a significant 

      breakthrough in biotechnology. We are optimistic that this technology will 

      contribute to renewed hope and momentum in global public health.

            For the full paper, please visit: 

            https://pubmed.ncbi.nlm.nih.gov/38787725/

                                                                                                                                    

            About LZCap®

            Innovative and proprietary mRNA capping agents LZCaps are amenable 

      for “one-pot”in vitro co-transcriptional capping of mRNA and saRNA.

            ● High Yield & Capping Efficiency

            The mRNA yield is up to 200μg with 1 μg linearized DNA template per 

      standard IVT reaction with LZCap®AG(3'Acm), about 3-5 times that of ARCA.

            LZCap® AG(3'Acm) capping efficiency is over 95%. 

            ● Higher Protein Expression

            mRNAs and saRNA with LZCap®AG(3'Acm) show higher protein 

      expression than mRNAs with marketed Cap1 analog 3'-OMe-7mG trinucleotide 

      both in vitro and in vivo. 

            mRNAs with LZCap®AG(3'Acm) show improved stability towards decapping 

      enzyme compared to those with marketed Cap1 analog.  

            LZCap®AG(3'Acm) moiety shows higher affinity towards eIF4E complex than 

      that of marketed Cap1 analog.

            ● Low cost

            Highly efficient LZCap® and streamline of the process control can 

      significantly reduce the cost of mRNA production.

            Supply of high purity LZCap® (>97%) and other triphosphates (>99%) in 

      a GMP facility with hundreds kilogram capacity at a cost-effective price.

            ● Safety Profile 

            mRNAs with LZCap®AG(3'Acm) show low innate immunogenicity.

            3'-Acm-7mGTP does not inhibit nor is a substrate of human RNA and 

      human DNA polymerases. And no genotoxicity was observed in the Ames test.

            No cytotoxicity was observed with the 3'-Acm-7mG nucleoside in multiple 

      cell lines.